Самые важные вопросы о беге — интервью Михаилу Иванову. Анаэробный порог Аэробный порог как определить

  • 6. Понятие о дизадаптации, утрате адаптации и реадаптации, «цене» адаптации.
  • 7. Основные функциональные эффекты адаптации (экономизация, мобилизация, повышение резервных возможностей, ускорение процессов восстановления, устойчивость и надежность функций).
  • 8. Показатели тренированности в условиях покоя, при тестирующих (стандартных) и предельных (соревновательных) нагрузках.
  • 9. Понятие о срочном, отставленном и кумулятивном тренировочном эффекте.
  • 10. Функциональные резервы организма и их классификация. Мобилизация функциональных резервов.
  • 11. Позы и статические усилия. Феномен Лингарда.
  • 12. Классификация спортивных движений и упражнений по физиологическим критериям.
  • 13. Физиологическая характеристика спортивных упражнений аэробной мощности.
  • 14. Физиологическая характеристика спортивных упражнений анаэробной мощности.
  • 15. Характеристика циклических упражнений различной относительной мощности: максимальной, субмаксимальной, большой и умеренной.
  • 17. Общая характеристика стереотипных ациклических движений.
  • 18. Характеристика силовых и скоростно-силовых упражнений. Взрывные усилия.
  • 19. Прицельные упражнения, их влияние на различные системы организма.
  • 20. Характеристика движений, оцениваемых в баллах, их влияние на кислородный запрос, потребление и кислородный долг, работу вегетативных систем, развитие сенсорных систем и скелетных мышц.
  • 21. Характеристика ситуационных движений и видов спорта (спортивные игры, единоборства и кроссы).
  • 22. Ведущие физические качества, определяющие работоспособность в Вашем виде спорта. Физиологические методы их оценки.
  • 23. Гипертрофия мышц, виды гипертрофии. Влияние различных видов рабочей гипертрофии мышц на развитие силы и выносливости мышц.
  • 24. Механизмы внутримышечной и межмышечной координации в регуляции мышечного напряжения. Влияние симпатических нервов на проявление мышечной силы.
  • 25. Максимальная сила мышц. Максимальная произвольная сила. Физиологические механизмы регуляции мышечного напряжения. Силовой дефицит.
  • 26. Физиологические особенности тренировки силы мышц динамическими и статическими упражнениями.
  • 27. Физиологические механизмы развития скорости (быстроты) движений. Элементарные формы проявления быстроты (одиночных движений, двигательной реакции, смены циклов движений).
  • 28. Физиологические факторы, определяющие развитие скоростно-силовых качеств. Особенности проявления скоростно-силовых качеств в Вашем виде спорта.
  • 29. Скоростно-силовые упражнения. Центральные и периферические факторы, определяющие скоростно-силовые характеристики движений.
  • 31. Генетические и тренируемые факторы выносливости.
  • 32. Изменение чсс при динамической и статической мышечной работе. Контроль интенсивности аэробных нагрузок по чсс. Частота сердечных сокращений как критерий тяжести мышечной работы.
  • 33. Максимальная анаэробная мощность и максимальная анаэробная емкость – основа анаэробной выносливости.
  • 35. Порог анаэробного обмена (пано) и использование его в тренировочном процессе. Понятие об аэробной емкости и эффективности.
  • 36. Композиция мышц и аэробная выносливость. Кровоснабжение скелетных мышц при различных режимах сокращения и его связь с работоспособностью.
  • 38. Понятие о гибкости. Факторы, лимитирующие гибкость. Активная и пассивная гибкость. Влияние разминки, утомления, температуры окружающей среды на гибкость.
  • 40. Двигательные умения и навыки. Физиологические механизмы формирования двигательных навыков. Значение сенсорных и оперантных временных связей.
  • 41. Значение для формирования двигательных навыков ранее выработанных координаций (безусловных рефлексов и приобретенных навыков).
  • 42. Стабильность и вариативность компонентов двигательных навыков. Значение двигательного динамического стереотипа и экстраполяции в формировании двигательного навыка.
  • 43. Стадии формирования двигательных навыков (генерализации возбуждения, концентрации возбуждения, стабилизации и автоматизации навыка).
  • 44. Автоматизация движений, ее зависимость от размеров перемещаемой массы тела, утомления, возбудимости зон коры.
  • 45. Вегетативные компоненты двигательного навыка, их устойчивость.
  • 46. Программирование двигательного акта. Факторы, предшествующие программированию движений (афферентный синтез, принятие решения).
  • 47. Обратные связи и дополнительная информация и их роль в формировании и совершенствовании двигательного навыка. Речевая регуляция движений.
  • 48. Двигательная память, ее значение для формирования двигательного навыка.
  • 49. Устойчивость двигательных навыков. Факторы, нарушающие устойчивость навыков. Утрата компонентов навыка при прекращении систематических тренировок.
  • 51. Разминка, ее виды и влияние на системы организма. Влияние разминки на работоспособность. Длительность разминки. Особенности разминки в Вашем виде спорта.
  • 52. Врабатывание, его длительность при выполнении упражнений различного характера. Физиологические закономерности и механизмы врабатывания.
  • 53. «Мертвая точка» и «второе дыхание». Основные изменения в организме при этих состояниях.
  • 55. Утомление при мышечной работе. Особенности утомления в упражнениях различной мощности и при различных видах физических упражнений.
  • 56. Теории утомления. Центральные и периферические механизмы утомления. Особенности проявления утомления в Вашем виде спорта.
  • 57. Компенсированное (скрытое) и некомпенсированное (явное) утомление. Хроническое утомление, переутомление и перетренированность.
  • 58. Восстановительные процессы при выполнении и после мышечной работы и их общая характеристика. Фазы восстановления.
  • 60. Кислородный запрос в упражнениях различной мощности. Кислородный долг и его фракции.
  • 61. Средства, ускоряющие восстановительные процессы. Активный отдых, его значение для повышения работоспособности и эффективность после различных видов мышечной работы.
  • 62. Возрастная периодизация развития физиологических функций в онтогенезе.
  • 63. Возрастные особенности развития двигательных качеств и формирования двигательных навыков.
  • 70. Развитие двигательных качеств у женщин.
  • 71. Влияние тренировки на повышение функциональных возможностей женского организма.
  • 72. Физиологические особенности спортивной тренировки женщин.
  • 73. Влияние различных фаз омц на спортивную работоспособность женщин.
  • 74. Физиологические особенности мышечной деятельности в условиях повышенной температуры окружающей среды. Водно-солевой режим спортсмена.
  • 75. Рабочая гипертермия у спортсменов. Влияние повышенной температуры тела на работоспособность при выполнении физических упражнений различной предельной длительности.
  • 76. Гипоксия в условиях среднегорья и ее влияние на аэробную и анаэробную работоспособность.
  • 77. Физиологические основы повышения аэробной выносливости при тренировке в условиях средне- и высокогорья.
  • 78. Физиологические особенности мышечной деятельности в условиях пониженной температуры среды (на примере зимних видов спорта).
  • 79. Гипокинезия и ее влияние на функциональное состояние организма детей и взрослых. Физиологическое обоснование использования физических нагрузок в оздоровительных целях.
  • 80. Влияние физических упражнений на сердечно-сосудистую и дыхательную системы и мышечной аппарат людей зрелого возраста при занятиях физической культурой.
  • 81. Физическое здоровье человека и его критерии. Физиологические основы нормирования общей физической работоспособности лиц разного пола и возраста.
  • Снижение концентрации лактата в крови способствует повышение очень важного показателя –

    порога анаэробного обмена (ПАНО), величины нагрузки, при которой концентрация молочной кислоты в крови превышает 4 мМ/л. ПАНО является показателем аэробных возможностей организма и имеет прямую связь со спортивными результатами в видах спорта на выносливость. У тренированных спортсменов ПАНО достигается лишь при потреблении кислорода более 80% от МПК, а у нетренированных лиц – уже при 45-60% от МПК. Высокие аэробные возможности (МПК) у высококвалифицированных спортсменов определяются высокой производительностью сердца, т.е. МОК, что достигается за счет увеличения главным образом систолического объема крови, а ЧСС у них при максимальной нагрузке даже ниже, чем у нетренированных лиц.

    Увеличение систолического объема является следствием двух основных изменений в сердце:

    1) увеличение объема полостей сердца (дилятация);

    2) повышение сократительной способности миокарда.

    Одной из постоянных перестроек в деятельности сердца при развитии выносливости является

    брадикардия покоя (до 40-50 уд/мин и ниже), а также рабочая брадикардия, обусловленные

    снижением симпатических влияний и относительным преобладанием парасимпатических.

    36. Композиция мышц и аэробная выносливость. Кровоснабжение скелетных мышц при различных режимах сокращения и его связь с работоспособностью.

    Выносливость в значительной мере зависит от мышечного аппарата, в частности от композиции мышц, т.е. соотношения быстрых и медленных мышечных волокон. В скелетных мышцах выдающихся спортсменов, специализирующихся в видах спорта на выносливость, доля медленных волокон достигает 80% всех мышечных волокон тренируемой мышцы, т.е. в 1,5-2 раза больше, чем у нетренированных лиц. Многочисленные исследования показывают, что преобладание медленных волокон генетически предопределено, и соотношение быстрых и медленных мышечных волокон под влиянием тренировок практически не изменяется, но часть быстрых гликолитических волокон при этом может превратиться в быстрые окислительные.

    Один из эффектов тренировки на выносливость – увеличение толщины мышечных волокон, т.е. их рабочая гипертрофия по саркоплазматическому типу, которая сопровождается увеличением числа и размеров митохондрий внутри мышечных волокон, числа капилляров в расчете на одно мышечное волокно и на площадь поперечного сечения мышцы.

    В мышцах при тренировке выносливости происходят значительные биохимические изменения:

    1) увеличение активности ферментов окислительного метаболизма;

    2) увеличение содержания миоглобина;

    3) повышение содержания гликогена и липидов (до 50% по сравнению с нетренированными мышцами);

    4) повышение способности мышц окислять углеводы и особенно жиры.

    Тренированный организм относительно больше энергии

    при продолжительной работе получает за счет окисления жиров. Это способствует экономному использованию мышечного гликогена, снижает лактат в мышцах.

    37. Ловкость как проявление координационных способностей нервной системы. Показатели ловкости. Значение сенсорных систем, основной и дополнительной информации о движениях на проявление ловкости. Способность к расслаблению мышц, ее влияние на координацию движений.

    Ловкость – это способность к выполнению сложных по координации движений, проявление высоких координационных способностей нервной системы, т.е. сложного взаимодействия процессов возбуждения и торможения в двигательных нервных центрах.

    К ловкости относят также способность создавать новые двигательные акты и двигательные навыки, быстро переключаться с одного движения на другое при изменении ситуации.

    Критериями ловкости являются координационная сложность, точность движений и быстрота его выполнения.

    Программа (пространно-временная структура возбуждения мышц) сложно координированных движений, а также основная информация, поступающая через различные сенсорные системы, оставляют определенные следы в нервной системе, что при неоднократном их выполнении способствует запоминанию и программы, и полученных ощущений, т.е. формированию моторной памяти.

    Достаточно хорошо в памяти сохраняются последовательность и временные параметры различных фаз простых по структуре движений, но движения, имеющие сложную структуру, т.е. требующие ловкости, менее стойки. Поэтому даже спортсмены высокой квалификации при повторных выполнениях сложных по координации движений не каждый раз показывают свои лучшие результаты.

    Чрезмерно частое и длительное выполнение сложнокоординированных движений может привести к развитию перетренированности из-за перенапряжения подвижности нервных процессов. В то же время развитие координационных способностей способствует экономизации функций. Благодаря тонкой координации сокращения мышц снижается расход энергии на работу, нет чрезмерного возбуждение двигательных центров, четко взаимодействуют процессы возбуждения и торможения.

    Следовательно, развитие ловкости повышает работоспособность и отдаляет мышечное утомление.

  • Аэробный порог - это уровень нагрузки, при которой образование в превышает его распад, поэтому лактат начинает постепенно накапливаться в общей системе циркуляции. Часто ее определяют точкой, в которой уровень лактата превышает 2 ммоль/л.

    На рисунке отмечен аэробный порог (первый анаэробный порог) и лактатный порог (второй анаэробный порог или ПАНО).

    • Восстановительный или компенсаторный режим бега - лактат ниже первого анаэробного порога
    • Аэробная зона - между аэробным и лактатным порогами (оптимальна для аэробных тренировок с постоянной интенсивностью)
    • Анаэробный режим - имеет место во время высокоинтенсивных и на соревнованиях

    Эмпирический метод определения анаэробного порога

    Уровню аэробного порога (2 ммоль/л) соответствует скорость бега, при которой бегуны могут спокойно разговаривать, не чувствуя значительных затруднений в дыхании.

    Если бегуну при движении достаточен ритм дыхания, при котором на 4 шага делается вдох и на 4 шага выдох (при условии дыхания носом и ртом одновременно), то концентрация лактата в крови не превышает 3 ммоль/л. Если бегун перешел на ритм дыхания 3 шага вдох - 3 шага выдох, то он достиг порога анаэробного обмена (4 ммоль/л) или уже перешел его.

    Лучшим методом нахождения анаэробного порога является тестирование в спортивно-исследовательской лаборатории. Во время тестирования в лаборатории спортсмен бежит в течение нескольких минут с разной скоростью. Для определения концентрации лактата в крови из пальца берется кровь. Обычно тест на определение анаэробного порога состоит из шести этапов по 5 минут каждый. Скорость бега от этапа к этапу повышается. Между каждым этапом делается перерыв в одну минуту для взятия образца крови. Первый этап пробегается со скоростью медленнее марафонского темпа, а последний - со скоростью на уровне соревновательного темпа на 5 км. Выстроив график изменения концентрации лактата в крови на различных скоростях, физиолог сможет сказать, какой темп и какая ЧСС соответствуют уровню анаэробного порога спортсмена.

    Если у вас нет возможности пройти тестирование в лаборатории, можно самостоятельно провести тест на определение анаэробного порога на тред-миле или беговой дорожке, используя портативный лактометр Accusport Lactate (Boehringer Mannheim). Accusport Lactate -

    портативный прибор, доказавший свою состоятельность и измеряющий уровень лактата с точностью, сопоставимой с лабораторными исследованиями. Стоит он несколько тысяч рублей. Это значительно ниже стоимости анализаторов лактата, используемых в лабораториях, но все же дорого, если только вы не покупаете его с друзьями в складчину.

    Менее технологичным методом оценки анаэробного порога является его вычисление на основе результатов соревнований. Если вы являетесь бегуном со стажем, то ваш темп АнП будет примерно соответствовать соревновательному темпу на дистанциях от 15 км до полу марафона (21 км). Причиной этому является то, что величина анаэробного порога определяет темп, который бегун способен поддерживать на данных дистанциях. (На более коротких дистанциях спортсмен может слегка превышать свой анаэробный порог, а марафон обычно бегут в темпе чуть ниже анаэробного порога.) Если вы ранее выступали в основном на коротких дистанциях, то ваш темп АнП будет примерно на 6-9 секунд на км (с/км) медленнее соревновательного темпа на 10 км.

    Соответствующий темп, стимулирующий рост анаэробного порога, можно также найти по показателям ЧСС. Темп анаэробного порога обычно достигается при пульсе около 80-90% от резерва ЧСС или

    около 85-92% от максимальной ЧСС. Тем не менее, в связи с тем, что взаимосвязь между анаэробным порогом и ЧСС варьируется в зависимости от генетических особенностей и уровня подготовки, вероятно, наиболее точным показателем для определения темпа АнП является соревновательный темп на дистанциях от 15 км до полумарафона. Установив темп АнП, вы сможете найти ЧСС, которая соответствует данному темпу.

    Таблица 3.3 Средние значения анаэробного порога у людей разной подготовки

    Повышение анаэробного порога

    Несмотря на то, что тренировки на уровне анаэробного порога (АнП-тренировки) являются наиболее важным видом тренировок для бегунов на длинные дистанции, многие бегуны не знают, как повысить свой анаэробный порог. Метод повышения анаэробного порога на самом деле очень прост - бегать на уровне или чуть выше уровня анаэробного порога. Хотя АнП-тренировки могут казаться разновидностью скоростной работы, более точным было бы рассматривать их в качестве показателя вашей выносливости - способность поддерживать темп на протяжении длительного времени. Именно поэтому они включены в данную главу, касающуюся совершенствования выносливости, хотя и включают бег со скоростью значительно превосходящей темп дистанционных тренировок.

    АнП-тренировки делятся на три основных вида. При выполнении АнП-тренировок главной задачей является бег в темпе, при котором лактат начинает слегка накапливаться в крови. Если бежать в более низком темпе, то нельзя будет добиться значительного тренировочного воздействия, способствующего повышению анаэробного порога. Если бежать быстрее темпа анаэробного порога, то в организме начнет стремительно накапливаться молочная кислота, которая не позволит бегуну поддерживать высокий темп на протяжении длительного промежутка времени. Как мы уже знаем из главы 2, где речь шла о МПК-тренировках, наиболее эффективные тренировки - не обязательно тренировки на пределе возможностей. Тренировками, оказывающими наибольшее тренировочное

    Тренировки на развитие АнП включены в тренировочные планы глав 6-10 в объеме и количестве, необходимых для повышения работоспособности на конкретных дистанциях. Приведенные тренировочные планы будут способствовать развитию анаэробного порога, и в то же время препятствовать развитию перетренированности. Тремя основными видами АнП-тренировок являются темповый бег, интервалы на уровне АнП (АнП-интер-валы) и бег в гору на уровне АнП (горные АнП-тренировки). Во всех случаях интенсивность должна быть умеренной, - то есть интенсивность должна быть достаточно высокой, но такой, которую вы способны поддерживать в течение длительного времени; если же вы превысили свой темп на 6 с/км, то в течение следующих нескольких минут необходимо двигаться медленно. Если вы испытываете боль или скованность в мышцах на следующий день после АнП-тренировки, значит, ваш бег был слишком быстрым.

    Темповый бег. Классической тренировкой на повышение анаэробного порога является темповый бег - непрерывный бег на уровне АнП в течение 20-40 минут. Темповая тренировка может выглядеть таким образом: 3 км -легкий бег в качестве разминки, 6 км - бег в соревновательном темпе на 15-21 км, непродолжительная трусца для заминки. Тренировку можно выполнять на беговой дорожке или на шоссе. По началу желательно выполнять темповые тренировки на беговой дорожке или на другой размеченной трассе, с тем чтобы иметь возможность отслеживать темп. Применяя монитор сердечного ритма на размеченной трассе, вы можете использовать достигнутые на тренировке показатели ЧСС для выбора правильного темпа на последующих темповых занятиях. Обычно через несколько занятий у спортсменов появляется чувство темпа на уровне АнП. Исследования показывают, что бегуны, однажды нашедшие свой темп АнП, могут воспроизводить его с большой точностью. Маловажные старты на 5- 10 км могут служить хорошей альтернативой темповым тренировкам. Однако здесь нужно быть осторожным - не позволяйте себе увлечься забегом, преодолевая дистанцию на пределе возможностей.

    АнП-интервалы. Примерно такого же тренировочного воздействия как от темповых занятий можно добиться, разбив темповый бег на 2-4 отрезка. Такого рода тренировки, которые также называются "неспешными интервалами", были предложены спортивным физиологом Джеком Дэниэлсом. Например, три повторения на уровне АнП продолжительностью 8 минут каждое с 3-

    минутной трусцой между повторениями в общей сложности дают 24 минуты бега на уровне АнП. У этого вида АнП-тренировок есть один недостаток - отсутствие дополнительной психологической нагрузки, характерной для непрерывного темпового бега. Этот недостаток может сыграть с вами злую шутку во время соревнований.

    Горные АнП-тренировки. Хорошим методом повышения анаэробного порога является длительный бег в гору. Если вам посчастливилось (или не посчастливилось) жить в районе с достаточно пересеченным рельефом, то вы можете выполнять АнПтренировки с акцентом на работе в гору. Предположим, в вашем распоряжении есть маршрут длиною 15 км, который включает четыре подъема по 800 м и один подъем протяженностью 1500 м. Если вы будете преодолевать подъемы с интенсивностью на уровне АнП, то, в конечном итоге, наберете около 20 минут бега с данной интенсивностью.

    Таблица 3.4 Примеры тренировок, способствующих повышению АнП

    Темповый бег

    20-40 минут в темпе АнП

    АнП-интервалы

    4 X 1,5 км в темпе АнП с восстановительной трусцой

    продолжительностью 5 мин

    3 X 2,5 км в темпе АнП с восстановительной трусцой

    продолжительностью 5 мин

    2 X 4 км в темпе АнП с восстановительной трусцой

    продолжительностью 5 мин

    Горная АнП-

    Круг 15 км с подъемами общей протяженностью 5-7

    тренировка

    км, преодолеваемыми в темпе АнП

    Адаптация к тренировкам, направленным на повышение АнП

    Из главы 2 мы знаем, что благодаря тренировкам можно существенно повысить свое МПК. К сожалению, МПК повышается только в первые несколько лет тренировок, а затем, как правило, выходит на плато. Следовательно, если вы достаточно интенсивно тренировались в течение нескольких лет, то вероятно по большей части уже реализовали свои возможности в наращивании МПК. Поскольку МПК выходит на плато, а анаэробный порог продолжает расти, адаптационные изменения, благодаря которым бегун способен бежать при более высоком проценте от МПК без накопления молочной кислоты, должны происходить внутри мышечных клеток. В исследовании, сравнивающем элитных и хороших велосипедистовшоссейников, Эдвард Койл и его коллеги обнаружили, что

    варьирование в VO2 АнП (потребление кислорода на уровне АнП) у спортсменов на 75% объяснялось величиной их МПК (максимальное потребление кислорода) и активностью аэробных ферментов (Coyle et al. 1991). МПК устанавливает верхний предел VO2 АнП спортсмена, а активность аэробных ферментов и другие факторы внутри клеток определяют разницу между МПК и VO2 АнП.

    Исследования показывают, что повышение анаэробного порога происходит в результате как снижения уровня производства лактата, так и увеличения темпов его нейтрализации. Наиболее важными адаптационными изменениями, приводящими к повышению анаэробного порога, являются (1) увеличение количества и размеров митохондрий, (2) повышение активности аэробных ферментов, (3) увеличение плотности капилляров, (4) повышение концентрации миоглобина.

    Увеличение количества и размеров митохондрий. АнП-

    тренировки повышают как количество, так и размеры митохондрий, которые являются факторами аэробного производства энергии в мышечных клетках. Это позволяет мышцам вырабатывать больше энергии аэробным путем, что повышает потребление кислорода на уровне АнП и, следовательно, темп на уровне АнП.

    Увеличение активности аэробных ферментов. Активность аэробных ферментов представляет собой количество энергии, которое может быть произведено аэробным путем в митохондриях. Ферменты ускоряют химические реакции. Повышение скорости аэробной выработки энергии означает, что вы можете вырабатывать больше энергии за более короткий промежуток времени. Тренировки на выносливость увеличивают количество этих ферментов, что, в свою очередь, повышает эффективность работы митохондрий.

    Повышение плотности капилляров. Капилляры - самые маленькие кровяные сосуды. Обычно каждую мышечную клетку окружают несколько капилляров. Они являются транспортной системой для клетки, доставляющей к ней кислород и питательные вещества и удаляющей из нее побочные продукты, такие как углекислый газ. Тренировки на уровне АнП повышают число капилляров, приходящихся на одну мышечную клетку, а, следовательно, эффективность поставки и удаления веществ из нее, что позволяет поддерживать высокую скорость производства аэробной энергии.

    Повышение миоглобина. Функция миоглобина в мышечных клетках схожа с функцией гемоглобина в крови - он переносит кислород - в данном случае от мембраны клетки к митохондриям. Тренировки на уровне АнП повышают концентрацию миоглобина в

    На рисунке отмечен аэробный порог (первый анаэробный порог) и лактатный порог (второй анаэробный порог или ПАНО).

    Порог анаэробного обмена (ПАНО) - это уровень интенсивности нагрузки, при котором концентрация лактата в крови начинает резко повышаться, поскольку скорость его образования становится выше, чем скорость утилизации. Такой рост начинается при концентрации лакатата выше 4 ммоль/л. Порогу анаэробного обмена соответствует 85% от максимального пульса или 75% от .

    Понятие о пороге анаэробного обмена (ПАНО) было широко распространено в начале 1960-х годов. Сейчас также используется термин . В соответствии с начальными представлениями под ПАНО подразумевали нагрузки, выше которой развивается метаболический ацидоз. Началом метаболического ацидоза стали считать резкое изменение динамики (излом графика) ряда показателей в случае повышения мощности работы (ЛВ, ДК, неметаболический избыток углекислоты и др.), которые коррелировали с показателем содержания в крови (Биологический контроль спортсменов..., 1996; Дубровский, 2005; Лактатный порог..., 1997; Применение пульсометрии..., 1996; Солодков, Сологуб, 2005; Шац, 1995).

    Сегодня сформировались такие представления. При первом приросте концентрации лактата в крови фиксируется первая пороговая точка - первый анаэробный порог или аэробный порог . До этого порога не отмечается существенный прирост анаэробного метаболизма. Существует мнение, что аэробный порог - это мощность циклической работы, в которой в существенном объеме участвуют мышечные волокна . В среднем концентрация лактата в крови составляет около 2 ммоль*л -1 .

    Во время дальнейшего роста нагрузки отмечается период, когда концентрация лактата в крови после периода небольшого равномерного (почти линейного) повышения начинает выражено увеличиваться. Это возникает, в среднем, при концентрации лактата в крови 4 ммоль-л -1 и обозначается как второй анаэробный порог или просто анаэробный порог (ПАНО) . ПАНО в какой-то мере отражает максимальную аэробную продуктивность .

    Физиологическая характеристика аэробно-анаэробного перехода во время физической нагрузки

    Пороговые точки отражают мощность работы: скорость езды на велосипеде, плавания, а также величину V02 из расчета на 1 кг массы тела и в %V02max. Широко используется определение ПАНО по показателям скорости бега, плавания при уровне лактата в крови 4 ммоль-л -1 .

    Существуют также термины - вентиляционный и лактатный пороги . Они отображают методы оценки ПАНО. В первом случае речь идет о его оценке по началу нелинейного прироста ЛВ и повышение вентиляционного эквивалента для 02 (ВЭ0), который отражает этот нелинейный прирост (отношение МОД к потреблению кислорода).

    Термин лактатный порог используют, чтобы подчеркнуть способ определения ПАНО по критериям начала интенсивного прироста концентрации лактата в крови. Разные методы дают немного отличающиеся результаты.

    Различают: 1) методы, требующие забора крови для определения в ней лактата и pH; 2) неинвазивные методы, базирующиеся на показателях внешнего дыхания, газообмена, ЧСС и др.

    1. Инвазивные (прямые) методы определения ПАНО основываются на графическом анализе кинетики лактата крови во время нагрузки с возрастающей интенсивностью. Как критерии ПАНО используются фиксированные значения концентрации лактата (4 ммоль-л -1), степень его увеличения от исходного уровня на 1,5 или 2 ммоль-л -1 , точку отклонения от уровня стандартного покоя, достижение определенной, довольно высокой скорости наращивания лактата в крови (1 ммоль за 1 или 3 мин) либо показатели динамики лактата в восстановительном периоде.

    2. Неинвазивные методы определения ПАНО:

    • измерение динамики прироста ЛВ и ЧСС в зависимости от мощности нагрузки (скорость передвижения) (рис. 10). При этом различают две точки «излома» и, соответственно, три зоны аэробно-анаэробного перехода;
    • определение ПАНО по ДК, а также «неметаболического избытка» С02. Первоочередное накопление лактата в крови наблюдается при такой мощности нагрузки, когда ВЭ0 ниже всего (отношение МОД к V02 является самым низким). Это происходит как у тренированных, так и нетренированных лиц. Зато ВЭO2 начинает значительно возрастать.

    Для определения ПАН01 предлагается использовать как дополнительные критерии три такие условия: начало устойчивого повышения РаO2 (напряжение 02 в артериальной крови), отсутствие при этом снижения РаCO2(напряжение СО, в артериальной крови) и достижение величины ДК (отношение выделившегося С02 к потребленному 02) 0,90-0,95.

    Вследствие этого нарастают явления метаболического ацидоза.

    Рисунок 10 Типовая зависимость ЛВ и ЧСС от мощности нагрузки (скорости перемещения) в ступенчатом тесте продолжительностью более 20 мин: 1 - аэробный порог (ПАНО,), 2 - анаэробный порог (ПАНО J (Лактатный порог..., 1997)

    В основу дополнительных критериев определения ПАН02 можно положить начальные признаки реакции дыхательной компенсации метаболического ацидоза. Ведущим признаком этого является начало повышения вентиляционного эквивалента для С02 (отношение ЛВ к выделившемуся С02);

    • полевое измерение (тест Конкони), в основе которого лежит определение ПАНО по графику «ЧСС-мощность» с использованием портативных измерителей ЧСС (рис. 11). Конкони и другие исследователи обнаружили, что прямая линия этой зависимости имеет закономерный излом (отклонение) при высокой интенсивности работы. Если продолжать наращивать интенсивность нагрузки, в определенный момент ускорение ЧСС относительно замедляется, и эта точка обозначается как «точка отклонения». Излом отражает такую скорость бега, езды на велосипеде, плавания, гребли, при которой начинается быстрое накопление лактата в крови (Лактатный порог..., 1997; Коц, 1986; Солодков, Сологуб, 2003; Костилл, 1997; Шац, 1995).

    Оснащение : газоанализатор, тредбан (беговая дорожка).

    Ход работы

    После выполнения разминки у испытуемых разного уровня спортивной квалификации определяют ПАНО при помощи газоанализатора (например, «Охусоп Alpha») путем измерения неметаболического избытка С02 (ЕхсС02) во время нагрузок возрастающей мощности. Для расчета используют формулу;

    EхсСО2 = DRQ VO2 = VCO2 - RQ * V02.

    где RQ - дыхательный коэффициент в состоянии покоя; DRQ - разница между величинами дыхательного коэффициента в процессе работы и в состоянии покоя; V02 - потребление кислорода, л-мин -1 ; VCO2 - выделение С02, л-мин -1 .

    Путем графического построения в системе координат «логарифм значения ЕхсС02-мощность» определяют начало избыточного выделения С02. Величину ПАНО выражают в абсолютных единицах мощности выполняемой работы, либо в значениях потребления кислорода, либо в относительных величинах (например, в % V02max). Соответствующую уровню ПАНО мощность называют пороговой мощностью.

    У нетренированных здоровых людей ПАНО колеблется в пределах 48- 65 % V02max, а у спортсменов - 75-85 % V02max, то есть ПАНО наблюдается во время работы большей мощности.

    Рисунок 11 - Схематическое изображение принципа метода Конкони

    Для оценки полученных значений ПАНО по уровню потребления кислорода можно использовать нормативные показатели потребления кислорода у представителей циклических видов спорта по интенсивности работы, обуславливающей накопление лактата в крови на уровне 4 ммоль-л -1 (табл. 56).

    Таблица 56 - Нормативы для оценки ПАНО у спортсменов циклических видов спорта (по потреблению О. в мл кгг 1 мин -1) по интенсивности работы, соответствующей накоплению лактата в крови на уровне 4 ммоль л -1

    Значения ПАНО, полученные у разных испытуемых, сравнивают между собой и с нормативными показателями и делают выводы об уровне их специальной работоспособности.

    Чем отличаются аэробные (кардио) и анаэробные (силовые) тренировки, и почему мы не может выполнять подтягивания на перекладине или отжимания на брусьях так же долго, как крутить педали велосипеда или бегать? Секрет кроется в существовании так называемого анаэробного порога, который при его достижении, начинает "отключать" наши мышцы.

    Наша физическая активность на базовом уровне представляет собой окислительный процесс, происходящий в клетках мышечных тканей при участии сердечнососудистой и дыхательной систем. Как известно из школьных курсов биологии и химии, данный процесс происходит при участии кислорода, поступающего в мышцы от сердца через артерии и сеть мелких кровеносных сосудов, капилляров, с дальнейшим выделением энергии. На месте кислород замещается углекислым газом, и насыщенная им кровь уже по венам обратно через сердце поступает в легкие, а далее через органы дыхания вне нашего тела.

    Перейдём к чуть более подробному рассмотрению вопроса с точки зрения биохимии. Основным и самым универсальным источником энергии для повседневной активности и в принципе любых метаболических процессов живого организма является глюкоза (C6H12O6). Однако в чистом виде ни у животных, ни у растений это соединение не находится. В нашем случае при необходимости восстановления это жизненно важное соединение образуется посредством ферментного расщепления сложного полисахарида (C6H10O6)n, гликогена. Его запасы находятся в мышечных тканях (примерно 1% от общей массы, при активной нагрузке расходуются в первую очередь) и в печени (до 5-6% от массы, примерно 100 – 120 г для взрослого человека). Стоит отметить, что только гликоген, запасённый в клетках печени, (т.н. гепатоцитах) может быть переработан в глюкозу для питания организма в целом.

    Под воздействием поступаемого извне кислорода расщепленный гликоген распадается на глюкозу, которая, окисляясь (процесс называется гликолизом), высвобождает необходимую для обменных процессов энергию. Гликолиз после своей первой стадии, когда одна молекула глюкозы расщепляется на две молекулы пировиноградной кислоты или пирувата, может протекать по двум различным сценариям:

    Аэробному (при участии кислорода)

    1. Количество кислорода, единовременно поступающего к мышцам, достаточно для протекания окислительных реакций и полного расщепления углеводов;

    2. Потребление углеводных запасов и метаболизм в целом носят плавный, размеренный характер;

    3. Молекулы пирувата используются, в основном, для выработки энергии в митохондриях (энергетических клетках) и, в конечном итоге, они расщепляются до простейших молекул воды и углекислого газа;

    4. Образующийся в мышечных тканях побочный продукт в виде лактата (в литературе также встречается термин «молочная кислота», хотя химически лактат - это соль этой самой молочной кислоты, и образуется она практически сразу из-за нестабильности первого соединения) успевает выводиться без накопления за счёт активности аэробных ферментов в митохондриях.

    Анаэробному (без кислорода)

    1. Количество кислорода, единовременно поступающего к мышцам, недостаточно для плавного протекания окислительных реакций (хотя современные исследования учёных позволяют заявить, что анаэробный процесс работает и при достаточном получении мышцами кислорода, чаще всего это связано с неспособностью сердечнососудистой системы по разным причинам быстро выводить лактат);

    2. Характеризуется резким уровнем потребления углеводных запасов и неполным расщеплением сложных углеводов;

    3. Темпы гликолиза превышают темпы использования пирувата митохондриями, посредством быстрого химического распада у животных он расщепляется с образованием лактата (у растений же, кстати, при этом, образуется другое, всем известное соединение, этанол);

    4. Лактат начинает накапливаться и не успевает выводиться из мышечных тканей кровеносной системой. Однако его накопление, вопреки распространенному убеждению, не является первопричиной мышечной усталости. Прежде всего, накопление лактата – это защитная реакция нашего организма на падение концентрации глюкозы в крови.
    - снижение рН, связанное с накоплением лактата, лишает ферментов активности и, как следствие, ограничивает аэробную и анаэробную выработку энергии.

    При увеличении нагрузки во время длительной физической активности первый механизм расщепления гликогена рано или поздно переходит во второй. Всё определяется соотношением между скоростью выработки лактата, его диффузией в кровь и поглощением мышцами, сердцем, печенью и почками. Лактат образуется даже в состоянии покоя (попадая из мышц в систему кровообращения, он в итоге либо перерабатывается в глюкозу в печени, либо используется как топливо), но пока темпы его выработки равны потреблению, никаких функциональных ограничений не появляется. Таким образом, существует некая граница или порог, при котором скорость накопления этого самого лактата начинает превышать скорость его выведения.

    С точки зрения биохимии анаэробный порог (АнП, в некоторых источниках «лактатный») – это величина (единицы измерения: мл/кг/мин), показывающая, какое количество кислорода может потреблять человек (на единицу своей массы) без накопления молочной кислоты.
    С точки зрения тренировочной активности, АнП – это интенсивность (проще всего за основу взять частоту сердечных сокращений, ЧСС) упражнения, при котором нейтрализация лактата не поспевает за его выработкой.

    Как правило, ЧСС АнП примерно равно 85 – 90% от максимальной ЧСС. Последнюю величину можно измерить, либо сделав серию коротких спринтерских рывков на 60 – 100 м с последующим замером при помощи пульсометра величины ЧСС и подсчёта среднего значения. Либо посредством выполнения «на скорость» и максимально возможное количество повторений двух-трёх серий силовых упражнений со своим весом, таких как, например: подтягивания, отжимания на брусьях, плиометрические отжимания от пола, бурпи, приседания и пр. Главное – резкость движения, скорость и максимальная работа «до отказа». Замеры по пульсометру проводятся после каждой серии, в конце также высчитывается среднее значение, которое затем и берётся за основу. Очевидно, что полученный результат строго индивидуален и в определенном приближении его можно считать ориентиром своего реального значения АнП. Наиболее точно же замеры значения порога проводятся либо при помощи специальных портативных лактометров, либо с использованием сложного лабораторного оборудования по заранее разработанным и утвержденным методикам. Тем не менее существуют условные рекомендуемые пульсовые зоны, соответствующие тому или иному характеру тренировки в зависимости от возраста человека.

    Тренировка сердечнососудистой системы и выносливости – это всегда занятия при ЧСС, немного меньшем значения АнП. В свою очередь наиболее эффективные с точки зрения жиросжигания, то есть активизации липидного обмена – это тренировки на низком (50-60% от максимума) пульсе.

    Можно ли каким-то образом увеличить значение АнП?

    Конечно! Более того, анаэробный порог можно повышать на протяжении всей своей жизни (в отличие от, например, уровня максимального потребления кислорода, который рано или поздно выйдет на плато, ограничение, вызванное генетическими факторами, в частности, уровнем гемоглобина в крови). Исследования показывают, что повышение АнП происходит двумя путями: как за счёт снижения уровня производства лактата, так и, наоборот, за счёт увеличения скорости его выведения.
    Если представить, что кислород – это то же топливо, как, например, бензин, а наше сердце – не что иное, как двигатель внутреннего сгорания, то по аналогии с конструкцией разных производителей – один отдельно взятый человек будет потреблять тот же кислород более экономично, чем другой. Однако, как и двигателю, всей сердечной респираторной системе посредством специализированных тренировок можно сделать своеобразный «чип-тюнинг».

    Здесь работает всем известный принцип. Хочешь улучшить какое-то качество в себе? Дай ему стимул для роста. Соответственно, чтобы увеличить свой АнП, необходимо регулярно проводить тренировки на уровне ЧСС, чуть выше его значения (условно, 95% от максимальной ЧСС). Например, если твой текущий АнП находится на ЧСС 165 уд/мин, то одну, максимум две тренировки в неделю надо проводить при пульсе 170 уд/мин.

    Таким образом, существует четыре основных адаптационных изменения, приводящих к увеличению анаэробного порога.

    1. Увеличение количества и размера митохондрий (они являются факторами аэробного производства энергии в мышечных клетках). Итог: больше энергии аэробным путём.

    2. Повышение плотности капилляров. Итог: на одну клетку приходится больше капилляров, повышается эффективность доставки питательных веществ и удаления побочных продуктов

    3. Увеличение активности аэробных ферментов (являются ускорителями химических реакций в митохондриях). Итог: больше энергии за более короткий промежуток времени

    4. Повышение миоглобина (по аналогии с гемоглобином в крови переносит кислород в мышечных тканях от мембраны к митохондриям). Итог: повышение концентрации миоглобина, а значит – увеличение количества кислорода, доставляемого к митохондриям для выработки энергии.

    Похожие статьи