Сила, работа и утомление мышц. Утомление при физических нагрузках Факторы влияющие на утомление мышц

Различают следующие режимы мышечного сокращения:

1. Изотонические сокращения . Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

2. Изометрическое сокращения . Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы, например при поддержании позы тела.

3. Ауксотонические сокращения . Изменяются и длина, и тонус мышцы. С помощью их происходит передвижение тела и другие двигательные акты.

Максимальная сила мышц – это величина максимального напряжения, которое может развить мышца. Она зависит от строения мышцы, ее функционального состояния, исходной длины, а также пола, возраста, степени тренированности человека.

В зависимости от строения, выделяют мышцы с параллельными волокнами (например портняжная), веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь поперечного физиологического сечения – это сумма площадей поперечного сечения всех мышечных волокон, образующих мышцу. Наибольшая площадь поперечного физиологического сечения, а, следовательно, и сила, у перистых мышц. Наименьшая у мышц с параллельным расположением волокон.

При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании сила также увеличивается, а при охлаждении снижается. Сила мышц снижается при утомлении, нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами (кистевым, становым и т.д.).

Для сравнения силы различных мышц определяют их удельную или абсолютную силу . Она равна максимальной силе, деленной на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет 62 кг/см 2 , трехглавой – 16,8 кг/см 2 , жевательных – 10 кг/см 2 .

Работу мышц делят на динамическую и статическую Динамическая выполняется при перемещении груза. При динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотоническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме.

Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А=М·h). Работа измеряется в кг·м, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится максимальной. Если увеличение нагрузки продолжается, то работа снижается. Такое же влияние на величину работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в расчете величины рабочей нагрузки имеет определение мощности мышцы - это работа выполняемая в единицу времени (Р=А·Т). Единица измерения – ватт (Вт).

Утомление мышц

Утомление – это временное снижение работоспособности мышц в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается. Чем выше частота, сила раздражения и величина нагрузки, тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, но снижается амплитуда. Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях полного расслабления не наступает. Развивается контрактура – это состояние длительного, непроизвольного сокращения мышцы.

Работа и утомление мышц исследуются с помощью эргографии. В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1. Теория Шиффа : утомление является следствием истощения энергетических запасов в мышце.

2. Теория Пфлюгера : утомление обусловлено накоплением в мышце продуктов обмена.

3. Теория Ферворна : утомление объясняется недостатком кислорода в мышце.

Действительно, эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез АТФ, накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода. Однако в организме интенсивно работающие мышцы получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежит нервно-мышечным синапсам . Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль, в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М. Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным .

В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов, и угнетением синаптической передачи.

Утомление - это временное снижение работоспособности мыши в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается (рис). Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, .но/снижается амплитуда (рис.) Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях, полного расслабления не наступает, развивается контрактура. Это состояние непроизвольного длительного сокращения мышцы. Работа утомление мышц исследуются с помощью эргографии. В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1)Теория Шиффа: утомление является следствием истощения энергетических запасов, а мышце.

2. Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена.

3. Теория Ферворна: утомление объясняется недостатком кислорода в мышце. Действительно эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез ЛТФ. накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода. Однако в организме интенсивно работающие мышцы, получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежи? нервно-мышечным синапсам. Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль, в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М.Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным. В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов. и угнетением синаптической передачи.

Двигательные единицы

Основным морфо-функциональным элементов нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемым его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих гонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных, их сотни раз больше. Все ДЕ в зависимости от функциональных особенностей делятся_на_3_группы:

I. Медленные неутомляемые. Они образованы красными мышечными волокнами, в которых меньше миофнбрил. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят тоническим. Регуляция сокращений таких, волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек.

Пример, камбаловидная мышца. Н В. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются "белыми". Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными, Мотонейроны этих.."11^ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза.

II А. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.

Физиология гладких мышц

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желёз мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы поперечности клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной почёрченности. Последнее связано с тем, что сократительный аппарат не обладает упорядоченным строением. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением - нексусами, что обеспечивает распространение возбуждения по всей гладкомышечной структуре. Возбудимость и проводимость гладких мышц ниже. чем скелетных. Мембранный потенциал составляет 40-60 мВ, так как мембрана ГМК имеет относительно высокую проницаемость для ионов натрия. Причем у многих гладких мышц МП не постоянен. Он периодически уменьшается и вновь возвращается к исходному уровню. Такие колебания называют медленными волнами (МВ). Когда вершина медленные полны достигает критического уровня деполяризации, на ней начинают генерироваться потенциалы действия. сопровождающиеся сокращениями (рис). МВ и ПД проводятся по гладким мышцам со скоростью всего от 5 до 50 см/сек. Такие гладкие мышцы называют спонтанно активными, т.е. они обладают автоматией. Например за счет такой активности происходит перистальтика кишечника. Водители ритма кишечной перистальтики расположены в начальных отделах соответствующих кишок.

Генерация ПД в ГМК обусловлена входом в них ионов кальция. Механизмы электромеханического сопряжения также отличаются. Сокращение развивается за счет кальция, входящего в клетку во время ПД, Опосредует связь кальция с укорочением миофибрилл важнейший клеточный белок - кальмодулин.

Кривая сокращения также отличается. Латентный период, период укорочения, а особенно расслабления значительно продолжительнее, чем у скелетных мышц. Сокращение длится несколько секунд. Гладким мышцам, в отличие от скелетных свойственно явление пластического тонуса. Это способность длительное время находится в состоянии сокращения без значительных энергозатрат и утомления. Благодаря этому свойству поддерживается форма внутренних органов и тонус сосудов. Кроме того, гладкомышечные клетки сами являются рецепторами растяжения. При их натяжении начинают генерироваться ПД, что приводит к сокращению ГМК. Это явление называется: миогенным механизмом регуляции сократительной активности.

Изменение структуры мыши с возрастом

Анатомически у новорожденных имеются все скелетные мышцы, но относительно, веса тела они составляют всего 23% (у взрослого 44 %). Количество мышечных подокон в мышцах такое же как у взрослого. Однако микроструктура Мышечных волокон отличается.; Волокна меньше диаметром, в них больше ядер. По мере роста происходит. утолщение и удлинение волокон. Это происходит за счет утолщения миофибрилл, оттесняющих ядра на периферию. Размеры мышечных волокон стабилизируются к 20 годам.

Мышцы у детей эластичнее, чем у взрослых. Т.е. быстрее укорачиваются при сокращении и удлиняются при расслаблении. Возбудимость и лабильность мышц новорожденных, ниже чем взрослых, но с возрастом растет. У новорожденных даже во сне мышцы находятся в состоянии тонуса. Развитие различных групп мышц происходи г неравномерно. 84-5 лет более развиты мышцы предплечья, отстают в развитии мышцы кисти. Ускоренное согревание мышц кисти происходит в 6 - 7 лет. Причем разгибатели развиваются медленнее сгибателей. С возрастом изменяется соотношение тонуса мышц. В раннем детстве повышен тонус мышц кисти, разгибателей бедра т.д. постепенно распределение тонуса нормализуется.

Показатели силы и работы мыши в процессе роста

С возрастом сила мышечных сокращений увеличивается. Это объясняется не только увеличением мышечной массы, ни и совершенствованием двигательных рефлексов. Например, сила кисти с 5 до 16 лет возрастает в - 6 раз, мыши ног в 1 - 2,5 раза. Показатели силы до 10 лет больше у мальчиков. С 10 - 12 лет у девочек. Способность к быстрым и тонким движениям достигает оптимума к 14 годам, выносливость к 17. В 10 - 11 лет ребенок способен выполнять работу мощностью 100 вт, 18 -19- летние 250 - 300 вт.


Утомлением называется временное снижение или утрата работоспособности организма, органа или ткани, наступающее после нагрузок. Утомление является нормальным физиологическим процессом, который приводит к прекращению работы мышцы.
При длительном ритмическом раздражении в мышце развивается утомление, проявляющееся постепенным уменьшением амплитуды сокращений данной мышцы, вплоть до полного прекращения ее сокращения, несмотря на продолжающееся раздражение.

При утомлении увеличивается латентный период сокращений, удлиняется фаза расслабления мышцы, понижается возбудимость. Чем больше частота раздражений, тем быстрее наступает утомление. Причина утомления состоит в накоплении мышцей продуктов обмена веществ. В изолированной мышце снижение работоспособности при длительном раздражении действительно обусловлено тем, что во время ее сокращения накапливаются продукты обмена веществ - фосфорная кислота, связывающая ионы Са2+, молочная кислота и др. Они в значительной степени способствуют утомлению мышцы.

Основными причинами утомления при выполнении длительных упражнений большой и умеренной мощности становятся факторы, связанные со снижением уровня энергообеспечения работающих мышц (исчерпание внутримышечных запасов гликогена, накопление продуктов неполного окисления жиров, избыточное накопление NН3 и ИМФ, развитие гипогликемического состояния), а также нарушение электрохимического сопряжения в работающих мышцах и ухудшение деятельности ЦНС в условиях выраженной гипертермии, дегидратации и сдвига электролитного баланса организма. Таким образом, при выполнении длительных упражнений большой и умеренной мощности причины, приводящие к возникновению утомления, носят комплексный характер. В организме мышца постоянно снабжается кровью, и поэтому она постоянно получает определенное количество питательных веществ, а также освобождается от продуктов распада, которые могли бы нарушить ее функцию.

В большинстве случаев первичным звеном в развитии утомления при выполнении длительных упражнений большой и умеренной мощности являются изменения в объеме и характере внутримышечных энергетических субстратов. В широком диапазоне усилий при длительной работе (начиная от 25 % VO2 max и выше) значительная доля в ресинтезе АТФ приходится на окисление углеводов. Окисление жиров характерно только для упражнений, относительная мощность которых не превышает 50 % уровня VO2 max.

Рис. 1. Изменение концентрации глюкозы, жирных кислот и лактата в крови при выполнении длительных упражнений

Анаэробные источники энергии (КрФ и гликоген) оказывают заметное влияние на энергетику работы только в тех видах длительных упражнений, относительная мощность которых превышает значения лактатного и креатинфосфатного порогов, локализованных на уровне 60-75 % VO2 max. В связи с изменяющимся характером энергетического обеспечения при длительной работе изменяется и динамика основных биохимических показателей крови (рис. 1). Содержание глюкозы в крови в процессе выполнения длительной работы заметно снижается в случае, когда длительность упражнения превышает 90 мин. Содержание молочной кислоты и свободных жирных кислот в крови сохраняется на уровне покоя до тех пор, пока не будет достигнуто значительное исчерпание углеводных ресурсов организма. С этого момента содержание этих метаболитов в крови проявляет тенденцию к повышению.

Конкретные причины утомления при длительной работе могут быть обусловлены неспособностью работающих мышц поддерживать заданную скорость ресинтеза АТФ из-за снижения углеводных запасов, а также нарушениями в деятельности ЦНС из-за накопления аммиака и кетоновых тел в организме.

Таким образом, при выполнении любого упражнения можно выделить ведущие, наиболее нагружаемые звенья обмена веществ и функции систем организма, возможности которых и определяют способность спортсмена выполнять упражнения на требуемом уровне интенсивности и продолжительности. Это могут быть регуляторные системы (ЦНС, вегетативная нервная, нейрогуморальная), системы вегетативного обеспечения (дыхание, кровообращение, кровь) и исполнительная (двигательная) система.

Комплексный анализ проблемы утомления в спорте, проведенный физиологами, биохимиками, а также специалистами в области теории и методики спортивной тренировки (Я.М. Коц, Н.Н. Яковлев, В.Н. Волков, Н.И. Волков, В.Д. Моногаров, В.Н. Платонов и др.), убедительно показал, что утомление следует рассматривать как следствие выхода из строя какого-либо компонента в сложной системе органов и функций либо как нарушение взаимосвязи между ними. Ведущим звеном в развитии утомления может стать любой орган и его функция, если проявится несоответствие между уровнем физической нагрузки и имеющимися функциональными резервами. Поэтому первопричиной снижения работоспособности могут быть исчерпание энергетических резервов, тканевая гипоксия, снижение ферментативной активности под влиянием "рабочего" метаболизма тканей, нарушение целостности функциональных структур из-за недостаточности их пластического обеспечения, изменение гомеостаза, нарушение нервной и гормональной регуляции и др.

Выяснение механизмов утомления играет важную роль в практике спорта для обоснования узловых положений спортивной тренировки. В частности, утомление расценивается как фактор, стимулирующий мобилизацию функциональных ресурсов, определяющий границы оптимального объема тренирующих воздействий и обеспечивающий эффективность протекания адаптации, успешность соревновательной деятельности и профилактику переадаптации.

Научные достижения в области борьбы с утомлением мышц

Исследователи из Колумбийского университета (Нью-Йорк) выяснили, что усталость мышц после продолжительной физической нагрузки вызвана избыточным проникновением кальция в мышечные клетки. Более того, им удалось найти средство, ликвидирующее "протечку", которое заметно повысило выносливость лабораторных мышей, сообщает журнал Proceedings of the National Academy of Sciences.

Долгое время считалось, что утомление и болезненность мышц после физической нагрузки вызваны накоплением молочной кислоты. Однако в последние годы физиологи усомнились в данной теории. Чтобы пролить свет на этот вопрос, ученые под руководством Эндрю Маркса (Andrew Marks) изучали состояние мышц у мышей после трехнедельной физической нагрузки (ежедневное плавание в течение нескольких часов) и у спортсменов после трех дней интенсивной езды на велосипеде.

Выяснилось, что утомление мышц после физической нагрузки сопровождалось изменением химической структуры так называемого рианодинового рецептора, играющего важную роль в сокращении мышц. Этот процесс вызывал появление небольшой "течи" в клеточной оболочке (мембране), благодаря которой кальций начинал непрерывно поступать внутрь мышечной клетки. В результате происходило заметное уменьшение силы мышц и, одновременно, активировался фермент, повреждающий мышечные волокна.

Марксу и его коллегам также удалось найти средство, способное ликвидировать "течь", остановив поступление кальция, - препарат под названием S107. Мыши, получавшие это лекарство, дольше оставались энергичными и могли выдерживать большие физические нагрузки, сообщили исследователи. Предполагается, что S107 сможет блокировать чувство мышечной усталости и у людей.

По мнению ученых, этот препарат может оказаться особенно актуальным для борьбы с хронической усталостью при сердечной недостаточности. Более ранние исследования показали, что выраженный упадок сил у пациентов с этим заболеванием - иногда они не в состоянии встать с постели или почистить зубы - также сопровождается "протечкой" кальция. Однако в отличие от спортсменов, у людей с сердечной недостаточностью этот процесс является необратимым.

В ближайших планах ученых - протестировать препарат S107 на пациентах с сердечной недостаточностью. В случае если эксперименты окажутся успешными, препарат может поступить в продажу через несколько лет, считают специалисты.



Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, в которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает, пока не дойдет до нуля. Полученная таким образом кривая называется кривой утомления мышцы . Измерив и суммировав высоту всех сокращений, можно узнать общую высоту подъёма груза, а умножив груз на эту величину, определить количество работы, выполненной мышцей до наступления полного утомления.

Наряду с изменением амплитуды сокращений при утомлении нарастает латентный период сокращения и увеличиваются пороги раздражения и хронаксия, т. е. понижается возбудимость. Следует, однако, подчеркнуть, что все эти изменения возникают не тотчас же после начала работы мышцы - существует некоторый период, в течение которого наблюдаются увеличение амплитуд сокращений и небольшое повышение возбудимости мышцы. При этом мышца становится легко растяжимой. В таких случаях говорят, что мышца «врабатывается», т. е. приспособляется к работе при заданном ритме и силе раздражения. При дальнейшем длительном раздражении наступает утомление мышечных волокон.

Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами. Первой из них является то, что во время сокращений в мышце накапливаются продукты обмена веществ (в частности, молочная кислота, образующаяся при расщеплении гликогена), оказывающие угнетающее влияние на работоспособность мышечных волокон. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия.

Если изолированную мышцу, помещенную в раствор Рингера, довести длительным раздражением до полного утомления, то достаточно только сменить омывающую ее жидкость, чтобы восстановились сокращения мышцы.

Другой причиной развития утомления изолированной мышцы является постепенное истощение в ней энергетических запасов. При длительней работе изолированной мышцы происходит резкое уменьшение запасов гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для осуществления сокращения.

Рассматривая проблему утомления, следует подчеркнуть, что утомление изолированной скелетной мышцы при ее прямом раздражении является сугубо лабораторным феноменом и в естественных условиях существования организма утомление двигательного аппарата при длительной работе развивается совершенно отлично от того, что наблюдается в эксперименте. Обусловлено это не только тем, что в организме мышца непрерывно снабжается кровью и, следовательно, получает с кровью определённое количество питательных веществ (глюкозу, аминокислоты) и ocвобождается от продуктов обмена, нарушающих нормальную жизнедеятельность мышечных волокон. Главное отличие состоит в том, что в организме возбуждающие импульсы приходят к мышце с нерва. Нервно-мышечное coeдинение утомляется значительно раньше, чем мышечные волокна, в связи с чем блокирование передачи возбуждений с нерва на мышцу предохраняет последнюю от истощения, вызываемого длительной работой. В целостном организме еще раньше нервно-мышечных соединений утомляются при работе нервные центры.

Впервые И. М. Сеченов (1903) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза резко ускоряется, если в период отдыха производить работу другой рукой. Временное восстановление работоспособности мышц утомлённой руки может быть стигнутои при других видах двигательной активности, например при работе различных мышц нижних конечностей. В отличие от простого покоя такой отдых был назван И. М. Сеченовым активным. Сеченов рассматривал эти факты как доказательство того, что утомление прежде всего развивается в нервных центрах.

Убедительным доказательством роли изменения состояния нервных центров в развитии утомления в целом организме служат опыты с внушением. Так, исследуемый может длительно поднимать тяжелую гирю, если ему внушить, что в его руке находится легкая корзина. Напротив, если внушить исследуемому, поднимающему легкую корзину, что ему дана тяжелая гиря, то быстро развивается утомление. При этом изменения пульса, дыхания и газообмена находится в соответствии не с реальной, осуществляемой человеком работой, а с той, которая ему внушена (В. М. Василевский, Д. И. Шатенштейн).

Из изложенного выше следует, что утомление изолированной скелетной мышцы при ее прямом раздражении, утомление нервно-мышечного препарата при раздражении двигательного нерва и утомление двигательного аппарата в целом организме в условиях естественной деятельности сходны между собой лишь по своему внешнему выражению - уменьшению силы и величины мышечных сокращений.

По механизму же своего возникновения эти явления весьма значительно различаются.

Эргография . Для изучения мышечного утомления у человека в лабораторных условиях пользуются эргографами - приборами для записи амплитуды движения, ритмически выполняемого группой мышц.

Примером такого прибора может служить эргограф Моссо, записывающий движение нагруженного пальца при сгибании и разгибании и дающий суммарные сведения о работе собственного сгибателя этого пальца и общего сгибателя всех пальцев руки. Исследуемый, сгибая и разгибая палец, поднимает и опускает подвешенный к пальцу груз в ритме ударов метронома. Особый интерес представляют эргографы, воспроизводящие те или иные рабочие движения человека. Первым таким прибором был эргограф, примененный И. М. Сеченовым для изучения рабочих движений при пилке ручной пилой.

Меняя величину груза и частоту ударов метронома, можно установить тот ритм и груз, при которых данный индивидуум в данных условиях эксперимента выполняет наибольшую работу в кратчайший срок.

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Сила мышц. Сила - мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила), при изометрическом - максимальным напряжением, которое она может развить (статическая сила).

Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

Напряжение, которое могут развивать миофибриллы , определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина , так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

Величина сокращения снижается также при утомлении мышцы.

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

Физиологический поперечник мышцы - длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой (рис. 83).

Рис. 83. Анатомический (а-а) и физиологический (б-б) поперечники мышц с разным расположением волокон:


А - параллельноволокнистый тип; Б - одноперистый; В - двуперистый; Г - многоперистый.

Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

Сравнительным показателем силы разных мышц является абсолютная мышечная сила - отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

Работа мышц. При изометрическом и изотоническом сокращении мышца совершает работу.

Оценивая деятельность мышц, обычно учитывают только производимую ими внешнюю работу.

Работа мышцы, при которой происходит перемещение груза и костей в суставах называется динамической.

Работа (W) может быть определена как произведение массы груза (Р) на высоту подъема (h)

W= P·h Дж (кг/м, г/см)

Установлено, что величина работы зависит от величины нагрузки. Зависимость работы от величины нагрузки выражается законом средних нагрузок: наибольшая работа производится мышцей при умеренных (средних) нагрузках.

Максимальная работа мышцами выполняется и при среднем ритме сокращения (закон средних скоростей).

Мощность мышцы определяется как величина работы в единицу времени. Она достигает максимума у всех типов мышц так же при средних нагрузках и при среднем ритме сокращения. Наибольшая мощность у быстрых мышц.

Утомление мышц. Утомление - временное снижение или потеря работоспособности отдельной клетки, ткани, органа или организма в целом, наступающее после нагрузок (деятельности). Утомление мышц происходит при их длительном сокращении (работе) и имеет определенное биологическое значение, сигнализируя о истощении (частичном) энергетических ресурсов.

При утомлении понижаются функциональные свойства мышцы: возбудимость, лабильность и сократимость. Высота сокращения мышцы при развитии утомления постепенно снижается. Это снижение может дойти до полного исчезновения сокращений. Понижаясь, сокращения делаются все более растянутыми, особенно за счет удлинения периода расслабления: по окончании сокращения мышца долго не возвращается к первоначальной длине, находясь в состоянии контрактуры (крайне замедленное расслабление мышцы). Скелетные мышцы утомляются раньше гладких. В скелетных мышцах сначала утомляются белые волокна, а потом красные.

Из различных представлений о механизме утомления одной из наиболее ранних теорий, объясняющих утомление, была теория истощения, предложенная К. Шиффом. Согласно этой теории причиной утомления служит исчезновение в мышце энергетических веществ, в частности гликогена. Однако, детальное изучение показало, что в утомленных до предела мышцах содержание гликогена еще значительно. В дальнейшем Е. Пфлюгером была выдвинута теория засорения органа продуктами рабочего распада (теория отравления). Согласно этой теории, утомление объясняется накоплением большого количества молочной , фосфорной кислот и недостатком кислорода, а так же других продуктов обмена, которые нарушают обмен веществ в работающем органе и его деятельность прекращается.

Обе эти теории сформулированы на основании данных, полученных в экспериментах на изолированной скелетной мышце и объясняют утомление односторонне и упрощенно.

Дальнейшим изучением утомления в условиях целого организма установлено, что в утомленной мышце появляются продукты обмена веществ, уменьшается содержание гликогена, АТФ, креатинофосфата. Изменения наступают в сократительных белках мышцы. Происходит связывание или уменьшение сульфгидрильных групп актомиозина, в результате чего нарушается процесс синтеза и распада АТФ. Нарушения в химическом составе мышцы, находящейся в целостном организме, выражены в меньшей степени, чем в изолированной благодаря транспортной функции крови.

Исследованиями Н.Е. Введенского установлено, что утомление прежде всего развивается в нервно-мышечном синапсе в связи с низкой его лабильностью.

Быстрая утомляемость синапсов обусловлена несколькими факторами.

Во-первых, при длительном раздражении в нервных окончаниях уменьшается запас медиатора, а его синтез не поспевает за расходованием.

Во-вторых, накапливающиеся продукты обмена в мышце понижают чувствительность постсинаптической мембраны к ацетилхолину, в результате чего уменьшается величина постсинаптического потенциала. Когда он понижается до критического уровня, в мышечном волокне не возникает возбуждения.

И.М.Сеченов (1903)-, исследуя на сконструированном им эргографе для двух рук работоспособность мышц при поднятии груза, установил, что работоспособность утомленной правой руки восстанавливается полнее и быстрее после активного отдыха , т.е. отдыха сопровождаемого работой левой руки. Подобного же рода влияние на работоспособность утомленной руки оказывает сочетающееся с отдыхом раздражение индукционным током чувствительных (афферентных) нервных волокон кисти другой руки, а также работа ногами, связанная с подъемом тяжести, и вообще двигательная активность.

Таким образом, активный отдых, сопровождающийся умеренной работой других мышечных групп, оказывается более эффективным средством борьбы с утомлением двигательного аппарата, чем простой покой.

Причину наиболее эффективного восстановления работоспособности двигательного аппарата в условиях активного отдыха Сеченов с полным основанием связывал с действием на центральную нервную систему афферентных импульсов от мышечных, сухожильных рецепторов работающих мышц.

В организме в различных звеньях рефлекторной дуги утомление в первую очередь наступает в нервных центрах, особенно в клетках коры больших полушарий.

В настоящее время установлено, что функциональное состояние мышц находится под влиянием центральной нервной системы и прежде всего коры больших полушарий. Это влияние осуществляется через соматические нервы, вегетативную нервную систему и железы внутренней секреции.

По двигательным нервам к мышце поступают импульсы из спинного и головного мозга, вызывая ее возбуждение и сокращение, сопровождающиеся изменением физико-химических свойств и функционального состояния мышцы.

Импульсы, поступающие по симпатическим волокнам в мышцу, усиливают процессы обмена веществ, кровоснабжения и работоспособность мышцы. Такое же действие оказывают и медиаторы симпатической системы - адреналин и норадреналин.

Однако единой теории, объясняющей причины утомления, сущность утомления до настоящего времени нет, т.к. в естественных условиях утомление двигательного аппарата организма является многофакторным процессом.

Наступление утомления мышц можно задержать с помощью тренировки. Она развивает и совершенствует функциональные возможности всех систем организма: нервной, дыхательной, кровообращения, выделения и т.д.

При тренировке увеличивается объем мышц в результате роста и утолщения мышечных волокон возрастает мышечная выносливость. В мышце повышается содержание гликогена, АТФ и креатинфосфата, ускоряется течение процессов распада и восстановления веществ, участвующих в обмене. В результате тренировки коэффициент использования кислорода при работе мышц повышается, усиливаются восстановительные процессы вследствие активизации всех ферментативных систем, уменьшается расход энергии. При тренировке совершенствуется регуляторная функция центральной нервной системы, и в первую очередь, коры больших полушарий.

Похожие статьи